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Abstract. Interesting and importantmultivariate statistical problems containing principal component
analysis, statistical visualization and singular value decomposition, furthermore, one of the basic
theorems of linear algebra, the matrix spectral theorem, the characterization of the structural stability
of dynamical systems and many others lead to a new class of global optimization problems where
the question is to find optimal orthogonal matrices. A special class is where the problem consists in
finding, for any 2�k�n, the dominant k-dimensional eigenspace of an n× n symmetric matrix A in
Rn where the eigenspaces are spanned by the k largest eigenvectors. This leads to the maximization
of a special quadratic function on the Stiefel manifoldMn�k. Based on the global Lagrange multiplier
rule developed in Rapcsák (1997) and the paper dealing with Stiefel manifolds in optimization theory
(Rapcsák, 2002), the global optimality conditions of this smooth optimization problem are obtained,
then they are applied in concrete cases.
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1. Introduction

Many statistical problems in estimations, testing hypothesis, experimental designs,
representation points of distributions, etc., can be formulated as optimization prob-
lems (see, e.g., Fang et al., 1996; Rao, 1993). A part of these problems can be
solved by the known optimization methods, but a big part may request creating
new methodology in optimization. In the paper, some statistical optimization prob-
lems are analyzed from a new class of global optimization with the aim of finding
optimal orthogonal matrices.
An important procedure in statistics is principal component analysis which

locates a new basis in the space of observations so that the new basis vectors be
orthonormal and the sum of the variances in the directions of a given number of
the new basis vectors be maximum where the variance matrix is symmetric and
positive semidefinite.
If the given number is equal to 2 or 3, principal component analysis can be an

efficient tool for the visualization of not necessarily square data matrices based
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on representations of both row- and column-objects. Row-objects from the matrix
are plotted as points according to their coordinates in a two- or three-dimensional
approximation. Since the columns of the data matrix are related to the basis from
which row-objects derive their scores, column-objects are represented in the low-
dimensional space as axes pointing in the directions which approximate their ori-
entations in the space of the full matrix.
Gabriel (1971, 1981) and Young et al. (1993) used this technique for statistical

visualization as well as Mareschal and Brans (1985) for visualizing decision ob-
jects in the interactive solution of multiattribute decision problems. This technique
was developed under the name of GAIA analysis (Geometrical Analysis for Inter-
active Assistance) in the PROMETHEE methods devoted to solve multiattribute
decision making problem and the experience with the corresponding PROMCALC
& GAIA software seems to be convenient.
If the given number � is equal to n, one of the basic theorems of linear algebra,

the spectral form for symmetric matrices (e.g., Bellmann, 1960) can be obtained.
Singular value decomposition (SVD) is an important tool of matrix algebra
and statistics that has been applied in a number of areas, for example, principal
component analysis and canonical correlation in statistics, solving linear systems,
least squares problems and computing the Moore–Penrose generalized inverse of a
given matrix in numerical linear algebra, and low rank approximation of matrices.
Its origins can be traced back to the work of French and Italian mathematicians
in the 1870s. One of its largest fields of application, namely low rank matrix ap-
proximation, was first reported on by Eckart and Young (1936) in the first volume
of Psychometrika. The matrix algebra and computational aspects of SVD are dis-
cussed in Kennedy and Gentle (1980), furthermore, Golub and Kahan (1965), and
statistical applications are described in Greenacre (1984).
An important property of dynamical systems is that of structural stability or

robustness. In heuristic terms, structural stability refers to the property that the
qualitative behaviour of a dynamical system is not changed by small perturbations
in its parameters (Helmke and Moore, 1994).
These problems in statistics and practical or theoretical fields can be formulated

as smooth nonlinear optimization problems with the same structural properties,
namely, the feasible sets are Stiefel manifolds. This class, up to now, has been
insufficiently examined — in spite of its importance — either from theoretical or
methodological point of view.
In the paper, the aim is to show that principal component analysis widely used in

statistics and multiattribute decision making, statistical visualization and singular
value decomposition, furthermore, the matrix spectral theorem, and the character-
ization of the structural stability of dynamical systems have a common root with
the determination, for any 2 � � � n, of the dominant k-dimensional eigenspace
of an n × n symmetric matrix A in Rn where the eigenspaces are spanned by
the corresponding eigenvectors. Moreover, all these problems are equivalent to the
maximization of the same type of special quadratic functions on a Stiefel manifold.
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Based on the global Lagrange multiplier rule developed in Rapcsák (1997) and
the paper dealing with Stiefel manifolds in optimization theory (Rapcsák, 2002),
the global optimality of these smooth optimization problems is characterized, then
the optimality conditions are applied to problems in multivariate statistics. Since
the background of the global Lagrangemultiplier rule of smooth nonlinear optimiz-
ation is the tensor approach in the corresponding Riemannian geometry, the proofs
of the theorems in statistics are simple consequences of the dominant eigenspace
theorem where no special coordinate representation is necessary.
In the Introduction, the statistical problems are briefly recalled, then the geomet-

ric background is clarified and a new representation of the Stiefel manifolds fitted
to optimization theory is given. Based on this approach, necessary and sufficient,
local and global optimality can be given, which lead to the characterization of
dominant eigenspaces in Euclidean spaces and to handling the above statistical
problems uniformly. Finally, some open questions close the paper.

2. Minimization on Stiefel Manifolds

In 1935, Stiefel introduced a new class of differentiable manifolds, called Stiefel
manifolds, consisting of all the orthonormal vector systems x1�x2�����x�∈Rn

for every pair of positive integers (n��), denoted by Mn��, where R
n is the n-

dimensional Euclidean space and ��n. If � = 1, the sphere is obtained, if �=n,
then the group of the n×n orthogonal matrices. These two special cases arise the
most frequently in differential geometry.
A geometric treatment of the Stiefel manifolds appropriate for optimization

theory cannot be found in standard differential geometry references. In the paper,
extrinsic coordinates are used for representing the points of the Stiefel manifolds
with more parameters than intrinsically are necessary, but this approach seems to
be better fitted to the methodology of optimization. The Stiefel manifoldMn�� may
be imbedded in the nk-dimensional Euclidean space where the use of the induced
Riemannian metric is proved to be advantageous for studying optimization prob-
lems (Rapcsák, 1997). The choice of this metric differs from that of Edelman et al.
(1998) where the Frobenius inner product for n×p matrices is introduced. More
precisely, in the two special cases when � = 1 and �=n, the induced Riemannian
metric and the canonical metric are the same, otherwise, they differ.
Consider the following optimization problem:

minf �x1�x2�����x�� (2.1)

xTi xj=�ij� 1� i�j���n�

xi∈Rn� i=1������� n�2�

where f �R�n→R is a twice continuously differentiable function and �ij is
the Kronecker’s delta. Since the feasible set is compact and the objective function
is continuous, optimization problem (2.1) has at least one global minimum point
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and one global maximum point, thus several stationary points. The feasible set
of problem (2.1), the Stiefel manifold denoted by Mn�� for every pair of positive
integers (��n), can be written as

xTi xi=1� i=1������� (2.2a)

xTi xj=0� i�j=1�����k�i �=j�

xi∈Rn� i=1�������n�2�

This new and interesting global optimization problem with important theoret-
ical and practical applications was studied in Bolla et al (1998), Edelman et al.
(1998), Helmke and Moore (1994) and Rapcsák (2001, 2002). In Rapcsák (2002),
the optimality conditions were obtained by the global Lagrange multiplier rule.
These latter results are summarized here.
In order to study the geometric structure of the feasible set in (2.1), a new

representation of the feasible set was suggested in Rapcsák (2001) providing a
decomposition of the feasible set as well. Let us introduce the following notations:

x=�xT1 �����x
T
� �

T ∈R�n�J=��i�j��i�j=1�������i<j��

Cl=




0 ��� 0 ��� 0
���
� � �

���
���
���

0 ��� In ��� 0
���
���

���
� � �

���
0 ��� 0 ��� 0



� l=1�������

Cij=




0 ��� 0 ��� 0 ���
���
� � �

���
� � �

���
���

0 ��� 0 ��� In ���
���
� � �

���
� � �

���
���

0 ��� In ��� 0 ���
0 ��� 0 ��� 0 ���



� �i�j�∈J�

where Cl, l=1������, are kn × kn blockdiagonal matrices, Cijkn×kn block
matrices, In is the identity matrix in Rn�Cl and Cij contain In in the l-th diagonal
block and in the (i�j) as well as (j�i) blocks, respectively. The kn × kn symmetric
matrices Cij are defined for all the pairs of different indices belonging to J , given
by the k(k—1)/2 combinations of the indices 1,���, �.
It follows that in the case of a compact Stiefel manifold, the feasible set Mn�k

given by (2.2a) and (2.2b) is equivalent to

hl�x�=
1
2
xTClx−

1
2
=0� l=1������� (2.3)

hij�x�=
1
2
xTCijx=0� �i�j�∈J�

x∈Rkn� n�2�
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In the definition of the index set J , the restriction i < j ensures that only one
of the identical equalities hij�x�=0 and hji�x�=0�i�j=1����, ��i �=j appears in
(2.3).
Thus, the feasible set Mn�k and its tangent space at the point x∈Mn�� can be

described by

Mn��=�x∈R�n�hl�x�=0� l=1�����ki� hij�x�=0� �i�j�∈J�� (2.4)

TMn���x�=�v∈R�n��hl�x�v=0� l=1������� �hij�x�v=0��i�j�∈J�=
�v∈R�n�xTl vl=0� l=1������� xTi vj+xTj vi=0� �i�j�∈J��

x∈Mn���

where the symbol � denotes the gradient vector of a function which is a row vector.
Intuitively, the tangent space at a point is the �-dimensional vector space tangent
to the submanifold with origin at the point of tangency. The normal space is the
orthogonal complement. On the sphere, tangents are perpendicular to radii, and the
normal space is radial.
The following statements characterize the structure of the feasible set.

THEOREM 1. (17). The set Mn�� is a compact C
	 differentiable manifold (Stiefel

manifold) with dimension kn− ���+1�
2 for every pair of positive integers (��n)

satisfying ��n. The Stiefel manifolds are connected if k<n. In cases �=n, the
Stiefel manifolds are of two components.

By using the equality representations of the compact Stiefel manifolds Mn��,
problem (2.1) is equivalent to

min f �x�

hl�x�=
1
2
xTClx−

1
2
=0� l=1�������

hij�x�=
1
2
xTCijx=0� �i�j�∈J�

x∈R�n� n�2�

(2.5)

Before stating the optimality conditions, the definition of geodesic convex sets is
recalled where the geodesic is used in the classical meaning. IfM is a Riemannian
C2 manifold, then a set �⊂M is geodesic convex if any two points of � are
joined by a geodesic belonging to �, moreover, a singleton is geodesic convex. Let
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us introduce the symmetric matrix function

S�x�= (2.6)


��f �x�C1x�In
1
2��f �x�C12x�In ���

1
2��f �x�C1�x�In

1
2��f �x�C12x�In ��f �x�C2x�In ��� 1

2��f �x�C2�x�In
���

���
� � �

���
1
2��f �x�C1�x�In

1
2��f �x�C2�x�In ��� ��f �x�C�x�In


�

x=�xT1 �����x
T
� �

T ∈Mn��

THEOREM 2. (17). If the point x0∈Mn�� is a (strict) local minimum of problem
�2�1�, then

�f�x0�=xT0 S�x0�� and (2.7)

�Hf�x0�−S�x0���TMn���x0�
(2.8)

is a positive semidefinite (definite) matrix where the symbol �TMn���x0� denotes
the restriction to the tangent space at the point x0 and H the Hessian matrix of a
function.
If �⊆Mn�� is an open geodesic convex set, and there exists a point x0 such

that

�f�x0�=xT0 S�x0�� and (2.9)

�Hf�x�−S�x���TMn���x�
� x∈��

are positive semidefinite (definite) matrices, then the point x0 is a (strict) global
minimum of the function f on the set �.

3. Dominant eigenspaces in Euclidean spaces

Let us consider the problem of finding, for any 2���n, the �-dimensional
eigenspace of an n×n symmetric matrix A in Rn where the eigenspaces are
spanned by the � largest eigenvectors. In the sequel, this subspace is referred to as
the dominant �-dimensional eigenspace of the matrix A for every 2���n. This
problem leads to the maximization of a special quadratic function f �R�n→R on
the Stiefel manifold Mn��, i.e., under the constraint that vectors x1�x2�����x�∈
Rn���n, form an orthonormal system.
In the case of a positive definite matrix A, the dominant eigenspace problem,

called the total least-squares problem, was analyzed as an optimization problem
on the Grassmannian manifolds and it was proved that there is a unique global
maximum in the Grassmannian manifold associated to the given number � iff  �>
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 �+1 where  � and  �+1 are the �-th and (�+1)-th eigenvalues of the matrix
A, respectively (Byrnes and Willems, 1986). In Helmke and Moore (1994), this
approach based on the Morse–Bott theory of differential topology was further
developed and a similar result stated for symmetric matrices.
Here, the global optimality conditions for determining the dominant subspaces

are derived from Theorem 2. Since the global Lagrange multiplier rule of smooth
optimization in Rn is based on the tensor approach in the corresponding Rieman-
nian geometry, the proofs of the theorems in statistics are simple consequences of
the dominant eigenspace theorem where no special coordinate representations are
necessary.
Consider the following optimization problem:

maxf �x�= 1
2
xT �x=

�∑
l=1

1
2
xTl Axl� (3.1)

x=(
xT1 �����x

T
�

)T ∈Mn��⊆R�n�

where A is the given n×n real symmetric matrix with eigenvalues  1� 2� ����
 n and � is the �n×ln blockdiagonal matrix with the diagonal blocks A�A�����A.
Now, the dominant eigenspaces depending on � will be characterized.

THEOREM 3. An infinite number of global maximum points with the global max-
imum value

∑�
i=1 � exists in problem (3.1), and every global maximum point

of problem (3.1) determines the dominant eigenspace of the matrix A for every
2���n.

Proof: If the point x∈Mn�� is a stationary point of problem (3.1), then by
Theorem 2.2,

�x=S�x�x� (3.2)

where

S�x�= (3.3)


xT1Ax1In x
T
1Ax2In ��� xT1Ax�In

xT1Ax2In x
T
2Ax2In ��� xT2Ax�In

���
���

� � �
���

xT1Ax�In x
T
2Ax�In ��� x

T
�A�x�In


�

x=(
xT1 �����x

T
�

)T ∈Mn���

The first-order condition (3.2) gives that

Axi=�xTi Axi�xi+
�∑

j=1�j �=i
�xTj Axi�xj� i=1������� (3.4)
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which is equivalent to

��xTi Axi�I−A�xi+
�∑

j=1�j �=i
�xTj Axi�xj=0� i=1������� (3.5)

An n × n real symmetric matrix has n real characteristic roots or real eigenval-
ues, the eigenvectors associated with the distinct characteristic roots are orthogonal
and the eigenvectors related to the multiple characteristic roots can be chosen or-
thogonally. Since the eigenvectors are determined up to a scalar multiple, we can
normalize them by (2.2a). By considering all the points x∈R�n consisting of k
number of eigenvectors of A in any order as the vector components of the points
x, we obtain points belonging to the Stiefel manifold Mn�k. Taking the eigenvalue
equations of the matrix A into account, it follows from (3.5) that all these points
are stationary points in (3.1). A consequence of this fact is that the number of the
stationary points given by the combinations of a complete system of eigenvectors
in problem (3.1) is equal to �nk� if all the eigenvalues are distinct, or otherwise, the
number of the stationary points is infinite for every 2 ���n.
If the vector components xi�=1������, of the stationary points x are of the eigen-

vectors of the matrix A, and the corresponding eigenvalues are xTi Axi�i=1�����k1,
then by (3.2), the values of the objective function at these stationary points are equal

to the sum of the corresponding eigenvalues, i.e., xT�x= �∑
i=1

xTi Axi. By choosing a

point of the Stiefel manifold Mn�k consisting of the eigenvectors associated to the

biggest � eigenvalues, the value of the objective function is equal to
�∑
i=1
 i. We show

that this value corresponds to the subspace generated by the vector components of
the given point of the Stiefel manifoldMn�k in R

n.
The trace of a square matrix A is the sum of its diagonal elements; it is denoted

by trA. Let us form the orthogonal matrices

X=�x1�����x��� x=(
xT1 �����x

T
�

)T ∈Mn��� (3.6)

By using (3.2) and (3.4), we have that

trAXXT = tr�Ax1�����Ax��



xT1
���
xT�


= (3.7)

tr
�∑
i=1

�∑
j=1

�xTj Axi�xjx
T
i =

�∑
i=1

xTi Axi=xT�x

at every stationary point of problem (3.1), and if T is a �×� orthogonal matrix,
then

trAXXT = trAXTTTXT � (3.8)
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We can conclude that any other points of Mn�k spanning the same subspace in
Rn as that of a stationary point give the same value of the objective function, so it
follows that the number of the global maximum points is infinite.
Now, it will be shown that

xT�x�
�∑
i=1

 i� x∈Mn��� (3.9)

As an orthogonal matrix T exists such that A=TT%T , where the diagonal
matrix %=diag� 1����� n), we have that

xT�x=
�∑
i=1

xTi Axi=
�∑
i=1

xTi T
T%Txi� x∈Mn��� (3.10)

Let y=�xT1 T
T �����xT�T

T �T . Because of the orthogonality of the matrix T , the point
y belongs toMn��. Thus,

xT tx=
k∑
i=1

xTi T
T%Txi=

k∑
i=1

n∑
i=1

 jy
2
ij�

k∑
i=1

 i� x∈Mn�k (3.11)

where we used the orthogonality of the vector components yi�i=1������� and
the fact that any convex combination

∑n
j=1 jy

2
ij fulfils the inequality

n∑
j=1

 jy
2
ij�max� j�j=1�����n�� i=1������� (3.12)

which implies the inequality (3.9).
A consequence of inequality (3.9) is that the global maximum value of problem

(3.1) is equal to the sum of the k largest eigenvalues, thus the theorem is proved.
We remark that only the first-order optimality conditions are used in the proof,

and no difficulty arises from the fact that the Stiefel manifoldMn�n is of two com-
ponents. It is easy to see that the matrixA−S�x� is not negative semidefinite at any
stationary point, so an interesting corollary of the statement is that this property is
not necessary for the global maximality (see Rapcsák, 2002). Thematrix function S
is positive semidefinite (definite) at any stationary points iff the matrix A is positive
semidefinite (definite).

4. Some optimization problems in statistics

In this part, the way how to apply Theorem 3 in concrete problems will be shown.
In statistics, principal component analysis locates a new basis in the space of obser-
vations so that the new basis vectors be orthonormal and the sum of the variances
in the directions of a given number of the new basis vectors be maximal where the
variance matrix is symmetric and positive semidefinite.
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If a complete, n component solution is specified, principal component analysis
generates a model space, exactly the same as the original data space but spanned
by one of the optimal systems of basis vectors. In the case of a complete principal
component solution, the error space is null. If, however, a k principal component
solution �k<n� is computed, the model space will consist of the subspace spanned
by k components of the complete solution, while the subspace spanning the �n−k�
different components of the complete solution will constitute the error space.
In the case where the dimension of principal component model is less than the

dimension of the space of observations, a measure showing how the model approx-
imates the data matrix is given by the ratio of the sum of the first k eigenvalues to
the sum of all the eigenvalues.
In the cases of �=2�3� principal component analysis can be an efficient tool for

the visualization of not necessarily square data matrices based on representations of
both row- and column-objects. Column-objects from thematrix are plotted as points
according to their coordinates in a two- or three-dimensional approximation. Since
the rows of the data matrix are related to the basis from which column-objects
derive their scores, row-objects are represented in the low-dimensional space as
axes pointing in the directions which approximate their orientations in the space
of the full matrix (Gabriel, 1971, 1981; Young et al., 1993). This technique seems
to work efficiently in the PROMCALC & GAIA software, because the measure of
approximation was always greater than 0.6, and except for some cases, greater than
0.8 in real-life applications (Mareshal and Brans, 1988).

THEOREM 4. Principal component analysis, for any 2���n, is equivalent
to the determination of the k-dimensional dominant eigenspace with respect to the
variance matrix as an n×� orthogonal matrix, and then, to the extension of this
orthogonal matrix to an orthonormal basis.

Proof. Let us consider the Stiefel manifolds Mn�� for every 2���n and
the real symmetric variance matrix A. By Theorem 3, an infinite number of
global maximum point of problem (3.1) exists and any determines the dominant
k-dimensional eigenspace of the matrix A. Any global maximum point forms an
n×k orthogonal matrix X, i.e., XTX= I�, where I� is the identity matrix in the
Euclidean spaceR�, thus, this orthogonal matrix can be extended to an orthonormal
basis.
Optimization problems (3.1) on the Stiefel manifolds which represent ortho-

gonality constraints arise in the symmetric eigenvalue problem, in the least-squares
problems related to some questions of system identification and parametrization in
statistics where the problem is to minimize the sum of the norrns of the equation
error (e.g., Byrnes and Willems, 1986), and in one of the most important decom-
positions in matrix computations, the singular value decomposition (SVD). The
SVD of a general matrix A is a transformation into a product of three matrices,
each of which has a simple special form and geometric interpretation. This SVD
representation is given by the following theorem (e.g., Greenacre, 1984).
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THEOREM 5. Any real m×n matrix A with rank l, (l �min�m�n��, can be
expressed in the form of

A=UDVT � (4.1)

where D is a �×� diagonal matrix with positive diagonal elements -1�����-��U
is anm×� matrix and V is an n×k matrix such that UTU = Im�V

TV = In, i.e., the
columns of U and V are orthonormal in the Euclidean sense.

DEFINITION 1. The dominant �-dimensional left and right singular subspaces
of an m×n matrix A with rank l�l�min�m�n�� for 2��� l are the sub-
spaces spanned by the k largest left and right singular vectors of the singular value
decomposition of A.

THEOREM 6. The dominant �-dimensional left and right singular subspaces of
an m×n matrix A with rank l (l � min (m,n)) for 2��� l are the dominant
�-dimensional eigenspaces of the matrices AAT and ATA.

Proof: Let us apply Theorem 3 to the matrix AAT . Then, any global max-
imum point x∈Mn�� of problem (3.1) determines the �-dimensional dominant
eigenspace of the matrix AAT in Rn. Let the m×� matrix X contain the � vector
components of the global maximum point as column vectors. Thus, XTX= I�,
where I� is the identity matrix in R�.
An equivalent formulation of SVD in terms of diads is

A=
l∑

i=1

-iuiv
T
i � (4.2)

where u1�����ul, and v1�����vl are the columns of U and V , respectively. The diag-
onal numbers -i of D are called singular values, while the vectors ui and vi�
i=1����l, are termed the left and right singular vectors, respectively. The left and
right singular vectors form an orthonormal basis for the columns and rows of A in
m-dimensional and n-dimensional spaces, respectively.
By SVD,

AAT =UD2UT =
l∑

i=1

-2
i uiu

T
i � (4.3)

where the values -2
i �i=1�����l, and the column vectors of U , the left singular

vectors of A are the eigenvalues and the eigenvectors of the matrix AAT , respect-
ively. It follows from Theorem 3 that the matrix X determines the dominant
k-dimensional left singular subspace of A.
The second part of the statement can be proved in the same way. �

Open questions are how to characterize global optimality by first-order and
second-order optimality conditions on the whole Stiefel manifolds, and how to
solve efficiently optimization problem (3.1) on computer.
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